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THEORY OF A CLASS OF DISCRETE OPTIMAL CONTROL SYS'I'EMS‘r

By B. W. Jordan and E. Polak

Department of Electrical Engineering
University of California
Berkeley, California

ABSTRACT
920 /1

The problem considered in this paper is that of finding cptimal
controls for a class of fixed duration processes in systems described
by nonlinear difference equations. The discrete versions of the ad-
joint system and the Hamiltonian are used in conjunction with the orig-
inal techniques found in the proofs of the Pontryagin Maximum Principle
to derive conditions necessary for a control to be optimal. These neces-
sary conditions are shown to be related to the Pontryagin conditions for
continuous systems in the following manner: the requirement of a global
maximum of a Hamiltonian becomes a condition of a local maximum or
of stationarity, while the transversality conditions remain identical.

Ao7HoR
1. INTRODUCTION

It has been known for some time that the Pontryagin Maximum
Principle for optimal continuous time systems cannot be extended to
discrete time systems, except for a few very special cases (Rozonoer
1959). This is due to the nature of the admissible control variations.
In the continuous time case, in order to find necessary conditions for

optimal controls, it is possible tc use variations which range over all
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admissible values of the contrcl variable. Thus the Maximum Principle
is a global result with respect to the control space. However, in the
discrete time case, only amplitudinally small variations in the control
may be taken and thus the most one can expect is a local condition.

Although no thoroughly exhaustive attempt has been made before to
utilize the Pontryagin techniques in constructing necessary conditions
for discrete time systems, some interesting results have been derived
by L. I. Rozonoer (1959), S. S. L. Chang (1961), and S. Katz (1962).

S. S. L. Chang considered a discretization technique for finding opt:-
mal solutions to continuous time problems by the use ¢f a dig:tal com-
puter. In the process, he obtained a result somewhat analogecus tc
condition (1) of Theorem 1 of this paper. Since his concern was with the
continuous time problem, he did not consider the discrete time problem
in any detail.

L. 1. Rozonoer considered the extension of the Maximum Principle
to systems described by linear difference equations. He obtained a
modified form of the Maximum Principle which gave not only a neces-
sary but also a sufficient condition for optimality of the control.

S. Katz showed that a further mod:fication of the Maximum Principle
did give necessary conditions for nonlinear discrete time problems with
no terminal constraints on the state. However, as will be seen from the
work in this paper, Katz's results were somewhat in error and only a
weaker statement than his is possible.

This paper is devoted to exploring the exact nature of the general
results for discrete systems which can be derived by means of techniques
similar to the ones used in the derivation of the Maximum Principle. It
is shown that in this case the Transversality Conditions are identical, but
that the condition of a global maximum of a Hamiltonian must be changed

to that of a local maximum or a stationary value.



2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

2.1 System Equations

Consider a system which satisfies the difference equations,

x(k) = x(k-1) + £ [x(k-1), wk-)] k=1,2,... . {1)

where
x=col (x,....x ) ¢ E (2)

is the state,

n=collu, ..., ule UCE (3)

- 1 T

is the control and
f = col (f f)eE" (4)
= - lg e o s n .

U is assumed to be defined so that if 3' € U then there exists an
€ >0 anda & u such that 3’ +€¢d u e U. It is also assumed that if
. 2 2

1.1_'+e' 63'6 U, E'+€25l".2 ¢ U, then _‘E!"’ \e! 6_\_1_'+(1—x)e bu €U,

/

0 < )\5 1. It 1s also assumed that
feC' on E'"xU i=1,2,...,n. (5)

Assume that x(0) is given. Then, if the control sequence

[20.K-1] 2 [u(0),....u(K - 1] (6)
is given, the trajectory
[x0,K)] £ [x(0),...,x(K)] (7

can be computed.



2. 2 Initial Conditions

Since the difference eqns. (1) do not depend on k, it will be
assumed that the starting time is always at k = 0 and that the

initial value of the state is always given as x(0).

2.3 Terminal Conditions

Time: It will always be assumed that the number of time steps

over which the system is operated is fixed at K.
State: There are two possibilities which will be considered as
terminal conditions on the state.
1) Assume that a closed, convex set SCE" is given. It is
required that at the final time step, K, the state lie in
S, [i.e., x(K) € S]. This definition allows S tc be a point
in E", a subset of E", or the whole of E". If S is of
the second type (i.e., a closed, convex subset of E" having
more than one point), it will be assumed that it has no sharp
edges. (i.e., at each point on its boundary surface a unique
tangent plane exists).
ii) It is alsc possible that S might be an (n - £ )-dimensional

manifold described by the £ equations
s={x]| gi[_}E(K)]=0 i=1,2,...,0 >1} . (8)

In this case, S need not be convex, it will be assumed
however, that the g, have continuous partial derivatives
with respect to the x, and that grad g, # 0 for any

—

xe S, i=1,...,1.

2.4 Cost Function

Assume that the cost of a transition from the state x(k - 1j to

the state x(k) caused by the control u(k - 1) is given by



fo[x(k - 15, ulk - 1;]. Let xo(k) be the cost of cperating the sysfem
from time step zerc to time step k. Then xo(k; 1s the solution of

the difference equation
x (k) = x (k- 1} + f[x(k - 1), uk - 1j] {9)

with xO(O) = 0. It is assumed that fo e C'onE" x U.
That this is a general cost function is demonstrated by S. Katz

(1962).

2.5 Extended System Equations

Now, for convenience, the system equaticns will be extended to

include the cost variable by defining the (n + 1)-dimensicnal vecters

gct(k) 2 ol [xo(k), x(k)] (10)

"~

f LY col (fo,_f) . (11)

The system equations become

-~

xi{k) = x(k - 1) + f[x(k - 1), u(k - 1)] . (12

Then given x(0) and [u(0.K - 1}], [é(OQK)] can be determined
and xO(K} will represent the cost incurred in operating the system
over the time sequence [0,K].

2.6 Problem Statement

The fundamental optimal control problem for the systems under
consideration will be denoted by P-1 and can be stated as
P-1: Given the positive integer' K 2and the initial state ;_(0)
for the system described by (12}, find the sequence
of controls [u(0, K-1)] sothat u(i)e U, i=0,..., K- I,

x{K) ¢ S and so that xO(K) is minimized.



Definition: The sequence [E*(O, K -1)], which minimizes x

o),
and satisfies the boundary conditions of P-1 will be called the

optimal control for P-1 and the corresponding trajectory [_)_:_*(O, Kj)]
will be called the optimal trajectory.

3. NECESSARY CONDITIONS FOR AN OPTIMAL SOLUTION

3.1 The Adjoint System

Define the (n + 1} x (n + 1) matrix

o1 of
Fk - 1) 2 -—_;-l =] =2 (13)
o ox,
ox- . [, P )
x(k - 1) x(k - 1)
uk - 1) u(k - 1)
and the (n + 1) x r matrix
af of.
A - _ 1
Bk-1) = 5] '[au] ) . (14)
x(k - 1) P xik - 1)
u(k - 1) u(k - 1)

Now the adjoint variables are defined as satisfying the following system
of difference equations

pk - 1) = p(k) + Fl(k - 1) p(k)

~ {15)
p(k) = col [py(k). p (k). ....p_(K)] .

Since this system of equations is homogeneous, all that is needed

to generate the trajectory of the adjoint system is the knowledge of p{K).



The determination of this vector will be a major consideraticn of
this work.

of, [x(k - 1), u(k - 1)]

Notice that 3% (k- 1) =0, 1=0,1,2,...,n.

0!
Consequently, po(k -1) = po(k), k=12,...,K.

In other words Py is constant for all k.

3.2 The Hamiltonian

The Hamiltonian is defined as
-, , A o : . e
Hlpik), x(k - 1), ulk - )] = <pik), f[x(k - 1), wk -1j] >. .16

It 1s seen that the system eqns. {12) and the adjoint system eqns. {15}

can be written in terms of the Hamiltonian:

x(k) = x(k - 1) + 28,
ap(k)
{17
pltk-1)=plik+ o)
8 x(k - 1)

Now the conditions necessary for the contrcl [11_:;(09 K - 1)] to be opti-
mal can be stated.

3.3 Theorem}

1f [u”{0,K - 1)] is an optimal control for P-1 and [x*(0,K)] is the
corresponding optimal trajectory, then there exists a function _&E*ku
k=0,1,...,K, satisfying {15) such that
5 H[p*(k), x*(k - 1), u( - D] = <p¥ky, £[x"k - 1, w¥k - 1]>
is a local max‘imum or stationary with respect to
l“.*(k -1)e U at each timt; step 15 k_<_ K .
ii) pg(K) < 0.



Discussion: This theorem is basic and holds regardless of the ter-
minal conditions. In other words, no matter what form S takes,

the conditions of this theorem must be fulfilled. The theorem gives
a test for determining if a control [u(0,K - 1)] can be optimal. This
test is performed by computing [ x(0, K)] and [é(o, K)] and inserting
these values into the.Hamiltonian. The Hamiltonian is then checked
to see if it is a local maximum or stationary for these values of

x(k - 1), é(k) and u(k - 1) with respect to u(k - 1), for each k,

1 <k <K. Also, in a large number of cases, there may be only one
local maximum or stationary point for H[i(k), x(k - 1}, u(k - 1)].
Then, using Condition i of Theorem I, E(k - 1) can be found in terms
of x(k - 1) and i(_k). The control B‘-k - 1) can then be eliminated
from the system eqns. (12) and the adjoint system eqns. (15). There
are then (2n + 2) homogeneous equations for which (2n + 2) initial
conditions must be found. There are (n + 1) boundary conditions, the
2:_(0). Knowledge of the (n + 1) boundary conditions _;_(K) will give the
solution. The vector i(K) will depend upon the form of the constraint
set and will be discussed.

Theorem I will be proven by examining each type of terminal con-
straint in turn and establishing the Transversality Conditions for each
case. These Transversality Conditions are developed in Theorems
II - V. It will be shown that for each type of terminal constraint, the
conditions of Theorem I are necessary.

The basic technique to be used will be to assume that the optimal
control and trajectory are known. The control will then be perturbed
sc as to affect the trajectory only slightly. The necessary conditions
which the optimal control must satisfy will then arise from the re-
quirement that any admissible perturbed control which satisfies the

terminal constraints must not result in a lower cost.




The first item, then, to be considered is the effect upon the tra-
jectory of small perturbations in the control. Since the value of ;{0)
is given, no perturbations of its value need be considered. Only per-
turbations in each control vector ufi), i= 0,...,K -1, must be
considered. It is at this point that the basic difference between this
discrete time problem and the similar one for continuous time prob-
lems occurs. It is required that any perturbation must i) be such
that the perturbed control is admissible, and 11) affect the trajectery
only slightly. In the continuous time problem, the control is assumed
to be measurable. Consequently, the perturbed control can vary from
the original control by large amounts, provided the length of time,
over which the perturbations are large, is small. This allows one to
search out all of the control space at each time and to therefore require
that the Hamiltonian be an absolute maximum at each instant of time.

In the discrete time problem, however, the only perturbations
which have a small effect on the trajectory are small perturbations.

Consequently, only local conditions can be obtained.

3.4 The Variational Equations

Consider, then, the effect of a perturbation con the contrel. Assume
that the optimal control [E*(OyK - 1)] and the optimal trajectory [g*(o, Kjj
are known. Then perturb the control and require that the perturbed con-
trol be admissible.

Let [u(0,K - 1] = [u%0) 4 ¢ 5 u(0),c..,u (K- 1) + ¢ 5u(K - 1i] be
the perturbed control where ¢ > 0 is a small number independent of k.
Then [x(0,K)] = [x*(0), x*(1j + 5x(1), ..., x*(K} + 5x(K)] will be the
perturbed trajectory.

Then

5x(k) = x(k) - x k), k=0,1,...,K. (18



1

Since f, ¢ C'on E™ xU, 1=0,1,..., n+1 and since 6x(0) = 0,

N K-1 .
§ x(K)= ¢ 2 D{i) 6u(i) + ofe) (19)
i=0
where
D(i) = (1 + F(K - 1))...(1 + F(i + 1)) B(i) . (20)
e - a ¥ +1
y(K) = 2 DGi) 6 uli) e E (21)
i=0

where E1n{+1 is obtained from En+1 by translating the origin of Em'1

to 5*(K). Define the set

~ - K-1 , “
@(K £ y(K) | y(K) = Z D(i) & u(i}, u(i) + éu(i) e U
X i=0 i=0,...,K-1

(22)

This is a convex cone and will be called the '""cone of attainability" due
to a similar definition by Pontryagin.

It 1s obvious that 9( K is convex since if

y (K) = go D(i) 6 u () e ”}{K
and
- K-1
y2K) = > D)6 ui() ¢ K
Yy 2 u K
i=0
then

~1 ~2 K-l 1 2
AY (K) + i1 - \) y (K) = § D{ij[ A6u' (i) + (1 - A} 5u"(i)] ¢ A _ 0<r<l.
ot K SAS

-10-



Notice also that 5*(K) € Vat and is the vertex of the cone since for

K - -
Suk¥x0%01,..., K -1, 8 _:_‘E_(K)E 0 which corresponds to x(K) = f*(K)‘

Finally notice that _;:r_(k) satisfies the difference equation

yi) =yk-1) + F(k -1) y(k - 1) + Bk - 1) 6u(k -1) . (23)

3.5 Case l: _R_lght End Constrained to Lie on a Smooth Surface

Let the constraint set S be an {n - £ )- dimensional manifold

described by

S=fx|gx=0 j=12...,2 <n]. (24)

Since each gj has continuous first partial derivatives and since
8gj/8_:_c_ #0,i=1...,2 for xe S, there is an (n - £ )-dimensional

plane, T, tangent to S at each xe S described by

3gj(_=5)

9 x

T=[x"]|<x-x, >=0,j=1,2,...,2]. (25)

Now construct the (n +1 -£ )-dimensional cylinder defined by

S1 =[x x=col (_:_z‘o,x),fe s], (26)
(see fig. 1). It has been assumed that §_*(K) € Sl. The cylinder S1
will have an (n + 1 - £ )-dimensional tangent plane at _J_:_*(K) described

by

T1 = [g | x = col (xo,x), xe T] . (27)

Clearly, the projection of T1 onto E" is T, where T is assumed
to be the tangent plane to S at }_*(K).
Construct the hyperplane C passing through f*(K) perpendi-

cular to the xo axis.

-11-



- "
C=lxjxy=x,K)] . (28)
The hyperplane C will cut T1 into two semi-infinite planes

T s x| x e T oxg 2 13 K)] (29)

|
T =[x | xe T, xofx:(K)] (30)

with the common boundary

(o}
™ -cnNT. (31}

C will also cut the cylinder Sl into two semi-infinite cylinders

st =[x|xes, X, zx’g(K)] (32)
1- - 1 *
S =[§|_}Ee s, xof_xo(K)] (33)
with the common boundary
o
st = cNs'.
Let 3
g = col (gl, gz, ceo gn) (34)

be an arbitrary n-dimensional vector lying in T. Let p(K) be a

~

vector consisting of the last n-components of p(K).

B(K) = col [p(K).---,p_(K)] . (35

Then for this case, the following theorem holds:

-12-



Theorem II
Consider the problem P-1 when the constraint set S is an
(n - £)-dimensional smooth manifold defined by (30). Then, neces-
sary conditions that [11_*(0, K - 1)] be an optimal control are
i) The conditions stated in Theorem I.
i) <p (K), £>=0
where p(K) was defined in (35) and § is any vector

*
lying in T tangent to S at x (K).

Proof

Since [u“(O; K-1)] is an cptimal control, it is necessary that

any admissible perturbed control, whose corresponding trajectory

PSSR S-S Y I NIy R S, (. S g
DAliDLICDS LIIC LCL1IllIlal CUIIRILLY

15, not giv

D L P & T e 4L S
C a 1UWCEL LUDL. L oL

tnis
requirement to be fulfilled, it 1s necessary that there exist a hyper-
plane separating @(K and Tln. This is shown by establishing

Lemma 1.

Lemma I
Let [;’O\, K)] be the trajectory corresponding to [ui{0,K - 1}] and
._": - 3

starting at x{0). Let G bea { <n-dimensional smocth manifcld with

1

anedge, G_, in E™', andlet x(K)¢ G_. Let L be the half-plane

=

tangent to G at x(K).

=

If the cones %K and L, having a common vertex at x(Kj, afe
not separated, then there exists a control [E'(OQK - 1)] with a cocrres-
ponding trajectory [g'(O,K)] , starting at g(O), such that _}E’ ‘Kie G
but x'(K) ¢ G_.

Proof of Lemma I

This lemma can be proven in a manner identical to the proocf of

Lemma 10 in L. S. Pontryagin (1962).

-13-



Let us apply this lemma to the proof of Theorem II. It follows

from Lemma I that if the cones 9( and Tln, having the common

vertex g*(K), are not separated, th:i there exists a control [E‘(Op K-1)]
with a corresponding trajectory [é'(o, K)] such that ;_'(K) lies in SI-
but not on the edge of Sl- and consequently will satisfy the constraints
and have a lower cost.

Therefore, for [E*(O,K - 1)] and [_:5*(09 K)] to be optimal, it is
necessary that there exist a hyperplane, call it A, separating O’(K and

Tlg., Let the (n + 1)-dimensional vector a = col (ao,a

~

P an+1) be the

normal to A. Choose the direction of a so that
<x-x{K), a> <0 if [x-x"K)] e ’RK, {36

then
<x -E*(K), a> > 0 if [5 w}_*(K)] € Tl"= . {37,
. =% 1©
Clearly, the hyperplane A contains x (K) and T" . Let
g = col qgl, ceos gn) be any vector in T. Then _E_ = col (0, ) will be
o] -~ -~
parallel to T!°. Since T1 C A, <a, £> = 0. But go = 0. There-
fore

sl e n
<2,£>= 2 a £.=0. 38
1=1

Since X dces not appear in the constraint relation {30}, any
point lying on the vector emanating from 5*(K) and pointing in the
direction m = col (-1,0,0,...0) belongs to Tlm. Consequently, froem

the way a was chosen, it follows that

o~ ~

But <a, n> = xrao_>‘ 0 and therefore

220 (39}

-14-



Since y(K) ¢ ﬁ)’{K, it follows from (36) that

~

<a, i(x) > < 0. (40)

Now choose a special perturbation in the control. Let the control be

perturbed at only the vth tirrgé step, 0 <v<K-1. Then

uk) =u'(k) k=0,...,v-1, v+l ..., K-1 (41)
~n(v) = u(v) + e b u) (42)

and r
6 x(k) =0, k<v (43)

5 x(v + 1) = £[x*(v), w*(») + € s u(v)] - flx (v), u¥ ()] (44)

Let | 8 T[x*(v), u*(v)]

yiv+1)= 3 & u(v). {45)

Now consider the adjoint system (15)
- ~T T o ,
p(k - 1) =p (k) + F (k - 1) pik) . {46)

Since 6 u{k) =0 k=v+1,...,K-1.

<plk), yik) > = <p(k), F(k - 1) y(k - 1) + y(k - 1)>

<FT(k - 1) pikj, y(k - 1)> + <p(k}, yik - 1)>

<plk - 1) - p{ki, y(k - 1)> + <pik), yik - 1}>

<pik - 1), yik - 1}>. 147)
fork= V+2;°°°9K-

-15-



Therefore
<p(K). y(K)>=<p{v +1}, y v +1)>. (48)

Now let p(K) = a. Then since Z(K) € ?{K’ the necessary condition

(40) becomes
<p (K}:. yiK)> < 0. {49}

From (48}, {49) becomes,
- .0
<E('v+l}sz(v+1}> < 0 i50)

or from {45}

* %
- df[x (v} u (v)] :
<pv +1), suiv)> <0. {51,
du

Equivalently, it is necessary that H{v + 1) be a local maximum or
stationary with respect to E*(v)a Since the choice of v was arbitrary,
a necessary condition that [E*(O; K - 1)] be an optimal contrei is that
H{v} be a local maximum or stationary for 1 <v <K.

This shows that for these terminal conditicns, conditicn .z} of
Theorem 1 is necessary. Since po(K) = a, <0 conditicn .ii: ¢f Trecrem i

0
is necessary. Finally, from {50}

n
<piK), §> = > a, & =0. (52}
=17

This completes the proof of Theorem II.

3.6 Case 2: Right End Constra:ned to Lie at a Pcint

, , . n .
Next consider the problem when S is a point in E'. For *his

problem, the following theorem holds.

-16-



Theorem 1il

Consider the problem P-1 when the constraint set S is a point
in E™. Then, necessary conditicns for [EH(O,K - 1)] te be an cptimal
control are

i) The conditions stated in Theorem I.

Proof

Since S is a point, S1 is a line perpendicular to joke (i-e.,

parallel to the x_ axis) and passing through S. Sl_ is the semi-

0
infinite line consisting of those points in S1 below or in C. Clearly,
;I'lm = Slm . It follow from Lemma I that "?’(K

separated by the hyperplane A, with its normal a. As in Theorem Ij,

(8]
U TP - N | Py D ml e om oamomland
Il Illdy ClIoUSC a ™~ U, IIUwWEveErL , bdiliile L id a P’U&ALL,

0—
versality conditions need be imposed on a. Proceeding as in Theorem

and S1= must be

~

iI, it 1s found by letting p(K) = a that conditions i) and ii) of Theorem

3
I are necessary for [u (0,K - 1)] to be an optimal control. Q. E.D.

Remark
Note that no cenditions are imposed on the values of the last

-~

n-components ¢f p(K).

3.7 Case 3: Free Right End

Consider the problem where S is the whole space, E”. In other
words, S can lie anywhere in E". For this set of terminal conditions

the following theorem holds.

Theorem 1V,
Consider the problem P-1 when the constraint set S = En. Then,
necessary conditions for [3*(03 K - 1)] to be an optimal contrcl are,
i) the conditions stated in Theorem I

*
) p(K)=0 i=1,2,...,n

~17-



Proof

1- i
Clearly. S will be the closed half-space in Emb1 consisting of

o
all points lying below or in C. Let T1 be an arbitrary line in C

assing through x*(K) and let Tl-’ be the semi-infinite hyperplane
p g X YP

o
consisting of those points lying in T1 or directly below it. It follows

from Lemma I that Tl- and ?(K must be separated by some hyger-

~

plane A with its normal a. It follows from Theorem II that a must
be perpendicular to Tlos But T10 has arbitrary directicn in C, con-
sequently, _;_ must be crthogonal tc any vector in C, 1.e., to C itself.
It can only have the value

a =col (-1,0,0,...,0) (53,

and therefore A coincides with C. Prcceeding as in Thecrem II and
letting p(K) = a , the conditicns of Theorem I are shown to be necessary
and in addition the Transversality Conditicns ii) of Theorem IV are

shown tc be necessary.

3.8 Case 4: Righkt Erd Constrained to Lie in an n-Dimensicnal

Subset of En

. . s n
The problems where S s a peint in E, a manifcld cf dimers.cn
n . . .
n - £ <n and the whcle ¢cf E have teen considered. The cnlv pr:-lem
left is that where S is an n-dimensional proper subset of E. Assume

that S is closed and convex.

S  will be a semi-intirite cylinder consisting ¢f all those poirts

in S which lie in or below C. Tw<c possibilities can ccour. (see

fig. 5}.

s . 1 1 . . -
Case A: x {(K) mav lie on the surface of S°. It will also lie in C. Let

e ; , i ow, . . B
T! be the tangent plane to S at x (K). T will be cut in half by C.

. 1.
Let T‘h- and T be *he upper ard lower halves as before with the
1 C %
i

ccmmen boundary "Jf‘1 = C ﬂTl. Let E be the ncrmal to T at

~

[

x (K. which points away frecm S

h =ccl (O, ,h . (54}

1,... n’

_18-



Let ¢ be the apward pointing ncrmal to C,

1

= ¢cl1,0,...,0 (55)

Y

&
Case B- x {K) may lie in the interior of Slg It will still lie in C.
In this case there will be no concept of a tangent plane and E will be

defined as the zero vector

_l1=col {0,0,...,0). {56}
The vector < w:ill be as in case A .

Then in either case the following thecrem holds.

Theorem 5

Consider the problem P-1 when the constraint set S is a clcsed,
convex, n-dimensional subset of E". Then, necessary conditions
for [_1_1_*(091{ - 1)] to be ar cptimal control are,

i} the conditions stated in Theorem I
Gy p (K) = AR + pc

where A, p are nonpcsitive constants.

Proocf

Ccnsider Case B. This situatiion is :dentical with that of the free

right end and Thecrem IV holds. Since h = 0 'n this case

(K) = P-C‘ = col (Hg 057 03° o o 90) R (\57}

fo @

But from Theorem [V it :s seen that p < 0. Therefore Theorem V
is true for Case B.

Cons:der Case A. Le' L be a hzif-hyperpiane having T15 28 an
edge and intersecting S1 ". Then it follows from Lemma 1 that %%

K
must be separated from L. Therefore, ”?{K must be separafed
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from the closed quarter-space, Q, bounded from zbocve by C and
1- ,

from the side by T . Let A be the hyperplane which separates

/KK from Q and let a be the normal tc A which peints inte Q.

~ ~

Then -a will lie in the space spanned by h and ¢ and w:il lie

s

between them. Therefore a can be written as a negative linear

s a~

combination of h and <.

a=Ah+pc A p<0. 158)

Aol B

Then, proceeding as :n Theorem II and letting ET(K) = a, the con-
ditions of Theorem I are shcwn tc be necessary and in add:t:on the
Transversality Conditions (ii) of Theorem V are shown ic be neces-
5ary.

Tke conditions of Theorem I have been shocwn toc be necessary for
each terminal constraint under consideration. Therefore, the procf

of Thecrem 1 is completed.

4. CONCLUSIONS

This paper demonstrates the extent to which the techrn:.ques used
in the construction of the Maximum Principle can be used to cbta:n a
related necessary optimality condition for discrete time prcbiems Dur
which is not necessarily a maximum cocndition.

It is interesting to see that Rozonoer's assertion, that the “'exten-
sion of the Maximum Principle to discrete systems is pcss:ble, gener-
ally speaking, only in the linear case," is correct and that the cerres-
ponding necessary conditions for the nonlinear case are, 1in faci, weaker
than thcse given by Pontryagin, ii.e., the Hamiltonian 1s required fc
be onlv a lccal maximum or stationary rather than an absclute maximumj.
In many systems, however, the Hamiltonian will have onlv cre Iccal
maximum cr stationary point and for these problems, the resulte der:ved

here are as useful as these derived by Pontryagin.



Also ncteworthy s the fact that Katz's ¢cnclis.on rhar the
Hamailtonian must be a local maximum, 1s not quite - cmEpieie due to
his neglect of second order terms. Rather, as shown ir *his paper,
it is only necessary that the Hamiltonian be a lccal maximum or
stationary.

There is one specific problem in which all the assumpticns of
this paper need not be met. In the free right-end case {see Section
3. 7 of this paper) which was considered by Katz, the control con-
straint set U need not be restricted as in the other cases. For
this case it :s cnly necessary that for any u' « U, there exist some
< and some 5 u such that u'+e 5ue U;i.e., it is not necessary
that the set [63 i 3‘ +€ b ue U for some ¢ ] be convex. The reascn
for this is that Slw for this case is a whole half space in En+1 ard
the separating hyperplane is uniquely defined. Consequently, the
proofs no longer depend on the convexity of ?\/K

For all cases considered here, it is possible for the control
constraint set to change with the time step k [i.e., U = Ulki}, pre-
vided that each of the Uk}, k=0,1,..., K -1, is an admiss:ible con-
straint set.

It :s hcped that the results presented in this paper wiil help ¢

complete the theory of optimal contrcl systems.
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